

Boost Unit

Series BLA

aerospace
climate control
electromechanical
filtration
fluid & gas handling
hydraulics
pneumatics
process control
sealing & shielding

Contents	Page
General information	3
Description	3
Oil cooling	3
Filter	4
Boost unit selection	4
Boost pressure	5
Installation	5
Line connection	6
Reservoir	6
Valves	6
Ordering information	6
Available versions	6
Filter cartridges	6
Installation dimensions	7

/!\ WARNING – USER RESPONSIBILITY

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker-Hannifin Corporation, its subsidiaries and authorized distributors provide product or system options for further investigation by users having technical expertise.

The user, through its own analysis and testing, is solely responsible for making the final selection of the system and components and assuring that all performance, endurance, maintenance, safety and warning requirements of the application are met. The user must analyze all aspects of the application, follow applicable industry standards, and follow the information concerning the product in the current product catalog and in any other materials provided from Parker or its subsidiaries or authorized distributors.

To the extent that Parker or its subsidiaries or authorized distributors provide component or system options based upon data or specifications provided by the user, the user is responsible for determining that such data and specifications are suitable and sufficient for all applications and reasonably foreseeable uses of the components or systems.

Offer of Sale

Please contact your Parker representation for a detailed "Offer of Sale".

General information

The BLA boost unit simplifies the building of closed or semi-closed hydrostatic transmissions.

Main features are:

- Replaces conventional charge pump and corresponding valves in many applications
- Allows pump speeds above normal selfpriming speed.
- Suitable for system flow rates to 400 l/min
- · Includes filter
- Simple construction no moving/wear parts
- · Cost-effective installation
- · Small tank size
- Helps in building a low-cost hydrostatic transmission.

Typical applications:

- Fan drives
- Propeller drives
- · Generator drives
- Pump drives.

Description

In a closed circuit hydrostatic transmission, a charge pump is normally included with the main pump, providing make-up fluid which replaces pump and motor volumetric losses. It also maintains sufficient pump inlet pressure to avoid cavitation.

The BLA boost unit replaces the charge pump in many applications, when the following conditions are met:

- The max-to-min pump flow ratio does not exceed 2:1
- System pressure changes gradually without frequent and pronounced pressure peaks
- The line length between pump and boost unit is relatively short.

There are two basic sizes of the BLA boost unit:

- BLA 4 (to 160 l/min pump flow)
- BLA 6 (to 400 l/min).

The main part of the unit is an aluminium housing with a built-in nozzle and an injector; refer to the cross section to the right.

When fluid flows from the motor outlet port through the unit and to the pump inlet port, the increased fluid velocity between the nozzle and injector creates a low pressure zone causing additional fluid to be drawn from tank into the main circuit.

Also, pressure increases after the injector, allowing the pump to be operated at speeds higher than the self-priming speed. The 'boost pressure' increases with flow as shown in the diagrams (fig. 4, page 5).

The housing includes ports that should be connected to the pump and motor drain ports respectively.

An additional bleed-off nozzle diverts approx. 10% of the main flow through the cartridge filter before being directed to the tank.

Oil cooling

An oil cooler is usually required in the hydraulic system, in order to remove the heat that is generated in the main circuit. A full-flow oil cooler should be installed in the return line between the motor and the boost unit; refer to fig. 3, page 4.

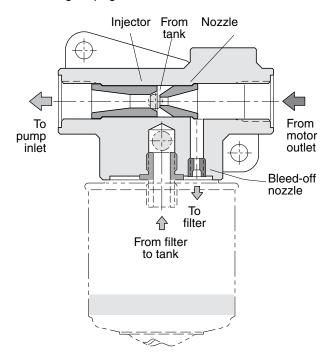
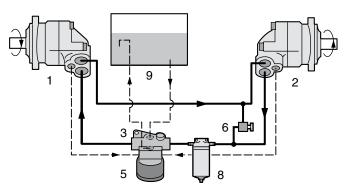


Fig. 1. BLA boost unit cross section.

BLA


Technical Information

Filter

The BLA boost unit is supplied with a standard spin-on cartridge filter. The paper insert provides a 20 µm nominal filtration (3 50 µm absolute filtration).

Cartridges are available as spare parts (page 6).

For continuous operation, an additional full-flow return filter is usually required. It should be installed upstream of the BLA unit; refer to the top schematic to the right.

- 1. Pump
- 2. Motor
- 3. Boost unit (with injector and nozzle)
- 5. Filter cartridge
- 6. Pressure relief valve
- 8. Full-flow filter (when required)
- 9. Reservoir

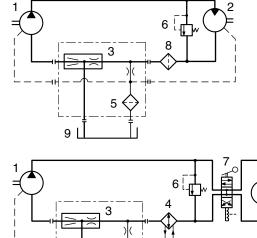
Fig. 2. Boost unit installation (example).

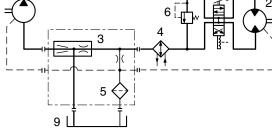
Boost unit selection

The BLA 4 is available in four sizes with a max recommended flow of 40, 63, 100, and 160 l/min. A filter is included.

The BLA 6 is available in the following sizes: 250, 350 and 400 l/min; it also includes a filter.

Example


Select a suitable boost unit for a closed loop hydrostatic transmission that utilizes an F11-19 pump at 4000 rpm; nominal flow is approx. 76 l/min.


According to the F11/F12 brochure, the required inlet pressure for an F11-19, operating as a pump at 4000 rpm, is 0.9 bar absolute.

The BLA 4-100 is selected (refer to the middle diagram, fig. 4). It will supply about 1.7 bar boost pressure at approx. 76 l/min, providing a margin for line losses between the boost unit and the pump.

NOTE: The boost pressure (after the unit) is approx. half the pressure before the unit.

> As an example, the up-stream pressure of a BLA 4-100 at max. flow (100 l/min) is about 6.5 bar.

- 1. Pump
- 2. Motor
- 3. Boost unit (with injector and nozzle)

5. Filter cartridge

- 4. Oil cooler (when required)
- required)
- 9. Reservoir

6. Pressure relief valve 7. Directional control valve

8. Full-flow filter (when

Fig. 3. Circuit schematics (examples).

BLA

Boost pressure

The diagrams in fig. 4 show max outlet pressure versus flow through the various boost units. The pressure increase obtained at higher flows usually corresponds to the additional pump inlet pressure required at elevated shaft speeds.

To avoid pump cavitation, the boost unit should be installed as close to the pump as possible. The pressure at the pump inlet must not, under any operating condition, drop below the required pressure at a particular pump speed.

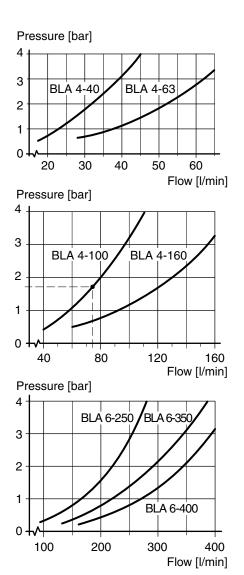


Fig. 4. BLA pressure/flow diagrams.

Installation

For proper functioning, the boost unit must be installed well below the lowest oil level in the reservoir.

The BLA can either be bolted directly to the reservoir side wall as shown below or connected separately with piping or hoses.

An adapter plate, with mounting face and hole pattern corresponding to that of the boost unit housing, should be fabricated and welded in place. The sealing is accomplished with seal washers.

The filtered oil flow from the boost unit must enter the reservoir as far away as possible from the inlet, and the pipe must always be well below the lowest oil level.

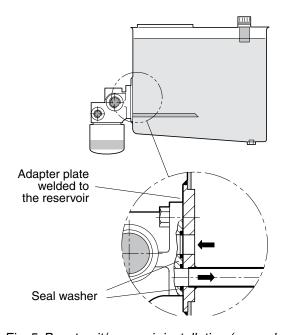


Fig. 5. Boost unit/reservoir installation (example).

Technical Information

Line connection

When the boost unit is connected to the reservoir with piping or hoses, line length should not exceed 0.5 m, and the inner diameter should equal or exceed 13 mm ($\frac{1}{2}$).

To avoid large pressure losses between the boost unit and the pump inlet, the line should be as straight as possible, not to exceed 0.5 m in length.

The recommended, minimum inner diameter of the line is shown in the following table.

BLA 4	Inner dia.	BLA 6	Inner dia.
size	[mm]	size	[mm]
-40	13	-250	32
-63	20	-350	38
-100	20	-400	38
-160	25		

Reservoir

The reservoir should be large enough to allow the oil to be turned over in 1.5 to 2 min. The oil will then be sufficiently de-aerated. The size of the reservoir normally corresponds to 15-20 % of the pump flow.

As an example, a pump flow of 75 l/min requires a reservoir of 10 to 15 l.

Valves

A system pressure relief valve or directional control valve should be connected as shown in figure 3 (page 4).

The valve return must be connected to the boost unit inlet (**not** directly to the reservoir).

NOTE: The drain lines from the pump and the motor are also connected to the boost unit; refer to the schematics and installation drawings on page 4.

Ordering information

Example:	BLA 6 - 250
J 1	BLA 4 or 6 BLA 4: 40 , 63 , 100 or 160 BLA 6: 250 , 350 or 400

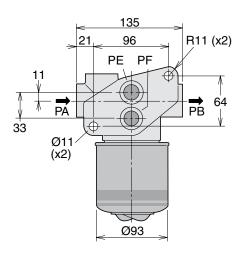
Available versions

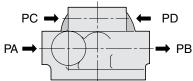
Version	Part no.
BLA 4-40	73 186
BLA 4-40-X*	379 7824
BLA 4-63	73 061
BLA 4-100	73062
BLA 4-160	73 159
BLA 6-250	73 311
BLA 6-350	370 1097
BLA 6-400	73 312

^{*} X - Bleed-off nozzle plugged; BLA 4

Filter cartridges

Version	Part no.
BLA 4-40,-63, -100	351 7857
BLA 4-160	73 194
BLA 6-250	73 308
BLA 6-350400	73 309


Seal washers (for ports PE and PF)


Version	Part no.	Washer size
BLA 4 (all)	943 908	1/_"
BLA 6-250	944 252	3/_"
BLA 6-350, -400	944 498	1"

Installation dimensions

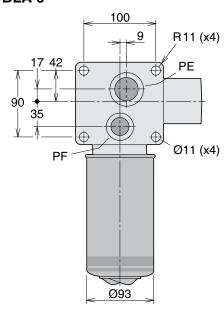
BLA 4

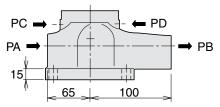
93 37 41 14 PA PPE PPE PPE PPE

* Additional space required for filter replacement

Port sizes (all are BSP)

Port	BLA 4	BLA 6	Description
PA	3/4"	11/ ₄ "	From motor outlet
PB	3/4"	1¹/₄"	To pump inlet
PC	3/8"	³ / ₄ "	From pump and
PD	3/8"	³ / ₄ "	motor drain ports
PE ¹⁾	1/2"	1"	From reservoir
$PF^{1)}$	1/2"	³ / ₄ "	Return to reservoir
PG	1/2"	³ / ₄ "	To cooler
PH	1/_"	³ / ₄ "	From cooler


1) Countersunk to accept seal washer:


PE: BLA4 – φ 29x2.4; BLA6 – φ 44x2.9 PF: BLA4 – φ 29x2.4; BLA6 – φ 36x2.4.

Weight

BLA size	Weight [kg]
4-40, -63, -100	1.9
4-160	2.1
6-250	3.1
6-350, 400	3.2

BLA 6

109 29 46 56 PA PE 45 PC PF

* Additional space required for filter replacement

20* 1

Dimension L

BLA size	L [mm]
4-40, -63, -100	153
4-160	203
6-250	250
6-350, -400	301

Parker Worldwide

AE – UAE, Dubai Tel: +971 4 8127100 parker.me@parker.com

AR – Argentina, Buenos Aires Tel: +54 3327 44 4129

AT – Austria, Wiener Neustadt Tel: +43 (0)2622 23501-0 parker.austria@parker.com

AT – Eastern Europe, Wiener Neustadt

Tel: +43 (0)2622 23501 900 parker.easteurope@parker.com

AU - Australia, Castle Hill Tel: +61 (0)2-9634 7777

AZ - Azerbaijan, Baku Tel: +994 50 2233 458 parker.azerbaijan@parker.com

BE/LU – Belgium, Nivelles Tel: +32 (0)67 280 900 parker.belgium@parker.com

BR - Brazil, Cachoeirinha RS Tel: +55 51 3470 9144

BY - Belarus, Minsk Tel: +375 17 209 9399 parker.belarus@parker.com

CA – Canada, Milton, Ontario Tel: +1 905 693 3000

CH - Switzerland, Etoy Tel: +41 (0) 21 821 02 30 parker.switzerland@parker.com

CL – Chile, Santiago Tel: +56 2 623 1216

CN - China, Shanghai Tel: +86 21 2899 5000

CZ - Czech Republic, Klecany Tel: +420 284 083 111 parker.czechrepublic@parker.com

DE - Germany, Kaarst Tel: +49 (0)2131 4016 0 parker.germany@parker.com

DK - Denmark, Ballerup Tel: +45 43 56 04 00 parker.denmark@parker.com

ES – Spain, Madrid Tel: +34 902 330 001 parker.spain@parker.com

FI - Finland, Vantaa Tel: +358 (0)20 753 2500 parker.finland@parker.com FR - France, Contamine s/Arve Tel: +33 (0)4 50 25 80 25 parker.france@parker.com

GR - Greece, Athens Tel: +30 210 933 6450 parker.greece@parker.com

HK – Hong Kong Tel: +852 2428 8008

HU - Hungary, Budapest Tel: +36 1 220 4155 parker.hungary@parker.com

IE - Ireland, Dublin Tel: +353 (0)1 466 6370 parker.ireland@parker.com

IN - India, Mumbai Tel: +91 22 6513 7081-85

IT - Italy, Corsico (MI) Tel: +39 02 45 19 21 parker.italy@parker.com

JP - Japan, Fujisawa Tel: +(81) 4 6635 3050

KR – South Korea, Seoul Tel: +82 2 559 0400

KZ - Kazakhstan, Almaty Tel: +7 7272 505 800 parker.easteurope@parker.com

LV - Latvia, Riga Tel: +371 6 745 2601 parker.latvia@parker.com

MX - Mexico, Apodaca Tel: +52 81 8156 6000

MY - Malaysia, Shah Alam Tel: +60 3 7849 0800

NL - The Netherlands, Oldenzaal Tel: +31 (0)541 585 000 parker.nl@parker.com

NO - Norway, Ski Tel: +47 64 91 10 00 parker.norway@parker.com

NZ – New Zealand, Mt Wellington Tel: +64 9 574 1744

PL - Poland, Warsaw Tel: +48 (0)22 573 24 00 parker.poland@parker.com

PT - Portugal, Leca da Palmeira Tel: +351 22 999 7360 parker.portugal@parker.com **RO - Romania,** Bucharest Tel: +40 21 252 1382 parker.romania@parker.com

RU - Russia, Moscow Tel: +7 495 645-2156 parker.russia@parker.com

SE - Sweden, Spånga Tel: +46 (0)8 59 79 50 00 parker.sweden@parker.com

SG – Singapore Tel: +65 6887 6300

SK – Slovakia, Banská Bystrica Tel: +421 484 162 252 parker.slovakia@parker.com

SL – Slovenia, Novo Mesto Tel: +386 7 337 6650 parker.slovenia@parker.com

TH - Thailand, Bangkok Tel: +662 717 8140

TR – Turkey, Istanbul Tel: +90 216 4997081 parker.turkey@parker.com

TW - Taiwan, Taipei Tel: +886 2 2298 8987

UA - Ukraine, Kiev Tel +380 44 494 2731 parker.ukraine@parker.com

UK - United Kingdom, Warwick Tel: +44 (0)1926 317 878 parker.uk@parker.com

US – USA, Cleveland (industrial) Tel: +1 216 896 3000

US – USA, Lincolnshire (mobile)

Tel: +1 847 821 1500

VE – Venezuela, Caracas Tel: +58 212 238 5422

ZA – South Africa, Kempton Park Tel: +27 (0)11 961 0700 parker.southafrica@parker.com

200910-0

-YGE Ed.

© 2009 Parker Hannifin Corporation. All rights reserved.

Catalogue HY30-8224/UK. POD 10/2009 PC

Free phone: 00 800 27 27 5374


(from AT, BE, CH, CZ, DE, DK, EE, ES, FI, FR, IE, IL, IS, IT, LU, MT, NL, NO, PL, PT, RU, SE, UK, ZA)

Fax: +44 1442 458112

US Product Information Centre

Free phone: 1-800-27 27 537

www.parker.com

